www.techaneesh.blogspot.com.

Wednesday, November 13, 2013

Lester Allan Pelton – The father of hydroelectric power

Lester Allan Pelton – The father of hydroelectric power


Lester A. Pelton (1829-1908)
Lester A. Pelton (1829-1908) - Inventor whose invention paved the way for low-cost hydroelectric power.
Pelton was born in Vermilion, Ohio, in 1829. At age 20 he set out by foot to cross the plains and strike it rich. The first fourteen years he spent mining and wasn’t very successful. He moved to Camptonville and turned to carpentry, built homes, a school house, mine structures, and water wheels, eventually becoming a millwright.
His interest was in the water wheel and from early 1878 to 1880 he tested 40 types of wheels with different buckets leading to the discovery of the “splitter” type bucket. A contest was held with four other makers of water wheels. His wheel surpassed the second best by 19 percent. Work of this crossed the country and order for his wheel came from everywhere. The Allen Foundry, in Nevada City, California, could not keep up with the orders being received. Pelton want to San Francisco and met with Mr. Brayton of Rankine, Brayton and Co. and formed thePelton Water Wheel Company.
Later, The Pelton Water Wheel Company operated under several names and eventually became part of the Baldwin-Lima-Hamilton Corp. of San Francisco and Philadelphia.
Pelton retired in Oakland, California, where he died March 14, 1908. His ashes were in an urn at a monument to him in Maple Grove Cemetery, Vermilion, Ohio.
The Pelton wheel uses the momentum of a water jet impinging on buckets attached to the periphery of a wheel to produce power. It is a development of the primitive, so called “hurdy gurdy” wheel used in the California gold fields in the nineteenth century. Various inventors contributed to this type of water turbine, including Lester A. Pelton (1831 – 1908), who in 1880 patented the characteristic split bucket form.
Subsequent important contributions to the Pelton-wheel technology were made by W.A. Doble.

This is how it all began…

Figures 11,12 and 13 - Peltons sketches of hydro turbine
Figures 11,12 and 13 - Peltons sketches of hydro turbine
After discovery of gold in California, the mining industry flourished. Related industries also grew, such as: stampmills, crushers, logging operations, saw mills; there were blacksmith shops, machine shops and foundries. Water was the main source of power… Water wheels of various types were used, some more efficient than others. Crude jets were used to increase the power and speed of the wheel. Later, new nozzles were made of brass utilizing a higher head of water.
Changes in bucket designs brought the efficiency of the wheel to approximately 40 percent.
The equipment in the mines were increasing in size and demanded more power, and soon found the wheel was inadequate as a power source. During this period, Lester A. Pelton of Camptonville, Yuba County, California, a carpenter and a millwright familiar with water wheels and the overshot and undershot methods of driving them, began looking for another way to increase their speed and power.
In early 1878 he obtained the necessary equipment to test the various types of buckets. He spent the following two years testing thirty to forty different bucket designs. Close examination showed water splashing back against the next bucket impeding it. Many experiments were made to overcome this problem.

Solving the impeding problem?

Different stories have been told how Pelton solved the impeding problem. One as told by his friend, Jim Hutchinson, while Pelton was visiting a neighbor and shooting the breeze. His neighbor used a garden hose to drive a stray cow away. He noticed the steam of water coming from the hose hit the cow directly on the sharp bone of its nose.
The water divided as it struck, half to one side and half to the other side and none deflected back. He then realized why his experiments had failed.
Another version, as experiments were being made, a wheel being tested became off-centered on the shaft causing the water to impinge on one-half of the bucket and deflect
to one side. This resulted in increased speed of the wheel. This also caused an end thrust to one bearing. To eliminate the new problem, Pelton then alternated the buckets as shown by his sketch Figure 12 the next step was obvious, the buckets were joined and centered to split the steam as shown by hissketch 13.
The tests of the joined buckets were so surprising that Pelton took steps to obtain his patent.
With the help of James H. Hutchinson, an employee of Allen Foundry, the wheel was perfected and became a huge success. Business began to boom at the Allen Foundry, later known as the Miner’s Foundry and Supply Company, which became over burdened with orders, that were coming from everywhere. Transportation was also becoming a problem.
Pelton went to San Francisco and worked an arrangement with Brayton, one of the owners of Rankine, Brayton and Company machine shop, and organized the Pelton Water Wheel Company.

World’s largest tangential water wheel

18-foot 6-inch hydro wheel
Figure 1 - 18-foot 6-inch hydro wheel
The North Star Mining Company had acquired additional mining properties and realized the need for more power to work the additional area. After some investigation and studies, the decision was made to develop a compressed air plant.
On May 4, 1895, a contract was signed with Fulton Engineering and Shipbuilding Works of San Francisco. This provided for the manufacturer of a water wheel with the choice of either the Knight, a competitor, who also designed water wheels, or the Pelton water wheel. The Pelton people had concerns about a wheel larger than fifteen feet in diameter.
Further studies by A.D. Foote, a civil engineer, hired to design and construct the plant, E.S. Cobb, E. A. Rix and the Pelton Company determined that a wheel with a maximum diameter of 18 feet 6 inches could be safely operated. The Pelton Company guaranteed an efficiency of 85 percent at full load, an average of 75 percent from half to full load of theoretical power of water, to govern the speed of the wheel at a maximum of 120 revolutions per minute, and not raise the air pressure above 105 psi.
Foot calculated that a wheel of a 30-foot diameter was also practical, but was unable to convince the Pelton people, so the 18-foot 6-inch wheel was built (Figure 1). The pit where the wheel operated still exists in the museum. Edward S. Cobb, mechanical engineer of San Francisco, designed the wheel which was delivered to be the largest tangential wheel ever made. There were 64 buckets attached to the rim.
However, this wheel was short lived. More air was needed as more machinery was added. The Board of Directors authorized an enlargement of the plant. Experience at the plant confirmed Foote’s earlier thinking and the new 30-foot diameter wheel was constructed. It became the largest in the world.
The water wheel was built by Cobb and Hesselmeyer of San Francisco. The construction of the wheel was similar to the 18-foot 6-inch wheel built by the Pelton Company. It is constructed of steel except of cast iron, and the Risdon patented buckets, which were made of bronze. Later, the buckets were replaced with cast iron. (Pelton buckets are
presently on the wheel). The normal speed of the wheel is 65 rpm, with pressure of 350 psi and a single jet of 3/4 inches in diameter which can produce 1000 horsepower.
This wheel is in its original position, less the compressor and related equipment.

The little Pelton Demonstartor

Displayed next to the 30-foot wheel is a little 24-inch diameter wheel, the first iron wheel made and installed by Lester A. Pelton in the George G. Allen Foundry and Machine Shop, Nevada City, later to become the Miners Foundry.
It ran the machine shop, pattern shop, pipe shop and other machines. It operated under 84 pounds pressure, using water from the city mains. It was used as a demonstrator to show customers needing power drives what
This Pelton Wheel could do while using water pressure. Installed in 1980, with an overhead line shaft belted to the machines, it was used for several years until individual electric motors were installed on separate machines. This wheel was donated by the Miners Foundry and Manufacturing Co. to the Nevada County Historical Society in November 1952.

Rotor of a Pelton turbine
Rotor of a Pelton turbine

Sunday, October 6, 2013

Smart Grids From 160 to 200 GW in two Years.....




Smart Grids From 160 to 200 GW in two Years ................


Nations across the world are faced with the challenge of increasing power production while reducing the carbon footprint. they need to minimise power loss and downtime, harness alternative power sources, and so on and so forth. the numerous challenges facing them have one solution—smart grids!

 
                     

Though we are nowhere close to that vision today, it serves as a starting point for our exploration of the smart grid. A smart grid is a giant network. It is like a crochet tablecloth—complex yet simple, breathtakingly beautiful and very useful. Various points of power generation, the utility (electricity supply board) and the consumers—all connected by a network—communicate with each other, use the shared information to make intelligent decisions, and sometimes even use the network to control how each other works. Basically, if you add ‘communication, intelligence and automation’ to today’s power distribution and transmission system, you get a smart grid.

Intro
A smart grid is a digital upgrade to the existing electric grid technology that has actually been quite the same for over 100 years. So what are the features of a smart grid? The USA’s Department of Energy describes it quite beautifully…

“Informed, involved, and active consumers—demand response and distributed energy resources.”

“Many distributed energy resources with plug-and-play convenience; focus on renewable energy.”

“Mature, well-integrated wholesale markets, growth of new electricity markets for consumers.”

“Power quality is a priority with a variety of quality/price options—rapid resolution of issues.”

“Greatly expanded data acquisition on grid parameters.”

“Automatically detects and responds to problems—focus on prevention, minimising impact to consumer.”

“Resilient to attack and natural disasters with rapid restoration capabilities.”
A Tata BP Solar spokesperson presenting an introduction to smart grids at a recent IEEE conference in Mysore rightly called it a ‘digital upgrade’ to current power distribution and long-distance transmission systems.

Such a system requires varied technologies and products, representing the convergence of embedded and communication technologies, electrical and electronics engineering, software and more. If orchestrated right, these technologies—collectively known as ‘smart grid’—would help improve reliability of power transmission, reduce downtime, instil transparency in the system, eliminate power losses, detect and fix faults speedily, enable distributed generation of power including non-conventional power sources, and, in general, improve the experience of both the power supplier and the consumer.

There are lots of reasons to implement smart grids and lots of technologies and trends to understand before doing so. Here is a quick round-up of the same.

Smart Tech For A Smart Grid

Integrated communications, sensing and measurement, intelligent devices, advanced control, improved interfaces and decision support…


Asmart grid typically pervades the entire energy distribution system, right from power generation to power consumption. It is not a single technology but a combination of products, technologies, services and ecosystem partners that act at various levels to optimise communications, improve resilience, and reduce the operational cost and complexity of the energy grid.

“The smart grid can be thought of as comprising three layers: the physical power layer (transmission and distribution), the data transport and control layer (communications and control) and the applications layer (applications and services). All these layers have a set function to ensure that the grid is able to meet the challenges we see today and make our future better,” says Vivek Tyagi, country sales manager, Freescale Semiconductor. And each level has various technologies at work.

Consider a sample of the technologies that fuel the smart grid:

• Communication network is the heart of the smart grid. State-of-the-art communication tools such as rugged integrated services routers (ISRs), hardened catalyst switches, and integrated security and software services are used across the network, while communication protocols ranging from radio frequency and Zigbee to optic fibre and GSM/GPRS act as the backbone of the network.
• Data centres play an important role in sharing and segmenting appropriate information across the fabric to help optimise energy distribution.
• Technologies that augment power from various sources before distribution help harness renewable energy sources such as solar and wind power.
• Intelligent monitoring systems keep track of the electricity flowing in the system.
• Power system automation tools use artificial intelligence and analytics to quickly diagnose and solve grid failures and power outages.
• Superconductive transmission lines reduce power loss.
• Automation devices such as fault-passage indicators, auto eclosures, sectionalisers (load-break switches) and automated ring main units improve the efficiency of the system.
• Smart meters, combined with an automated metering infrastructure, help understand patterns in energy consumption (during peak-hours and non-peaks hours, in various localities and so on). Powered by two-way digital communication links, these also help control appliances in the consumer’s household or machines on a factory floor; non-critical equipment can be shut down during peak times and restarted during lean times.
• Embedded control and integrated connectivity is at the heart of a true smart grid. A range of products such as low power 8-bit microcontrollers (MCUs) for gas, water and heat meters; highly-integrated 32-bit MCUs for single- and three hase electric meters; digital signal controllers (DSCs) for power line modems; 32-bit processors for energy gateways, broadband routers and concentrators; acceleration sensors for tamper detection; air-flow or liquid-flow pressure sen-sors for gas, water or heat meters; and ZigBee transceivers combined with MCUs for home area networks are some of the unseen technologies that drive the smart grid!

Smart grid architecture (courtesy: IBM)
Smart grid building blocks (courtesy: Secure Meters Limited)
Almost all these technologies and products are available in India, though not yet put to full use. S. Ramesh, retired chief engineer-electricity, Karnataka Power Transmission Corporation Ltd, and consultant to the Central Power Research Institute (CPRI), who is now working on a pilot smart grid project, informs, “Smart meters are available from SEMS, Larsen & Toubro, etc. Other smart grid devices such as communication devices, intelligent electronic devices (IEDs), automation devices, and control and protection devices are available from ABB, Siemens, Schneider, Cisco, Areva, Easun Reyrolle and many other companies.”

Smart Grids: A Must For India

Smart grids would help India march faster along the path of development. However, implementing smart grids in our country is no mean feat. Why? And what steps has the government taken to overcome these challenges?

“The total installed capacity of power generation in India is about 160 giga-watts (GW) and the target for 2012 is about 200 GW.  Our country is facing huge aggregate technical and commercial (AT&C) losses, the major contributions being technical losses, theft, billing and collection,” says Ramesh.

India’s transmission and distribution losses are amongst the highest in the world, averaging 26 per cent of total electricity production; in some states, the figure is as high as 62 per cent. When non-technical losses such as energy theft are included in the total, average losses are as high as 50 per cent. The financial loss has been estimated at 1.5 per cent of the national GDP, and is growing steadily. Ramesh opines that smart grids, doubtlessly, are the solution to such problems.

“The smart grid is a new way to use a network to optimise the delivery of energy to consumers to manage efficiency, reduce cost and increase reliability,” adds Raina.

Miles to go
However, the mere availability of knowledge and products does not make the implementation of smart grids any easier in a country like India where the power sector is quite a mess. Several impediments lie along the way: inefficiency of the energy system, complex integration of alternative, distributed power sources; lack of common management, visibility and coordinated control; lack of reliability and resilience.

“Another problem in the implementation of smart grids in India is safeguarding our equipment from unsocial elements. Vandalism, sabotage of the system is common. Damaging the meters and other equipment provided on poles and transformers is not uncommon,” says Ramesh.

Possible, with commitment

The Indian government has realised this and taken a major step in the form of the Restructured Accelerated Power Development Reforms Programme (RAP-DRP), which aims to first clear up the existing system to make it amenable for smart grids and then implement smart grids. Various tasks under the programme include consumer indexing, GIS and asset mapping, metering of distribution transformers and feeders, automatic data logging, feeder segregation and ring fencing, IT applications for prompt response to consumer grievances, meter reading, billing and collection, energy audits and establishment of a base line data system. Other tasks include renovation, modernisation and strengthening of 11kV sub-stations, transformers and transformer centres, reconductoring of lines at the 11kV level and below, load bifurcation and balancing, strengthening at 33kV and 66kV levels, and installation of capacitor banks, mobile service centres, etc.

Picture shot by S. Ramesh at Karol Bagh, New Delhi, portrays the current disorderliness in the power sector
One step ahead, some smart grid pilots are under way in states like Maharashtra, Karnataka and New Delhi, in association with companies like Larsen & Toubro, Telvent, GE, Cisco, IBM and Tata Power.

The government has also launched a taskforce and a forum for smart grid development. The forum is a non-profit voluntary consortium of public and private stakeholders, research institutions and selected utilities with the objective of accelerating smart grid development in India, while the taskforce is going to be an inter-ministerial group to ensure awareness, coordination and integration of the diverse activities related to smart grid technologies, promotion of smart grid research and development, collaboration on interoperability framework and so on.

This is an overall sign of the country’s commitment towards the cause.
Some of India’s smart grid pilots
North Delhi Power Limited (NDPL) has implemented a smart grid project in association with Tata Power. It uses products such as GE’s PowerOn coupled with automatic metering infrastructure (AMI), and GE’ SmallWorld geographic information system. NDPL seems to have reduced losses from 54 to 18 per cent in the past few years.

Karnataka has planned a pilot at Bengaluru’s Electronic City. A budget of one billion rupees has been assigned, and the project plan was drafted in January this year. The implementation is expected to take two years.

Maharashtra has also planned a project with Larsen & Toubro and Telvent.
Smart Grids Need Smart Homes

Advanced metering infrastructure, smart meters and home area networking are all boring terms to describe what is actually an exciting technological effect—the smart home! Give consumers something like the intelligent in-home device that Intel showcased at the Consumer Electronics Show this year, and they will probably feel more compelled to participate in the smart grid revolution
The full benefits of a smart grid can be reaped only with the cooperation of the consumers. However, consumers are not going to do anything unless they get something in return. New technologies in the space promise to bridge this gap, with ‘smart’ products that will please both the consumer and the utility.

As we have discussed before, the smart grid is actually like a giant supply chain management system for the power sector—it links up the small and large suppliers, the distribution and transmission system, the utility and the consumers. Of these, proactive and cooperative consumers are very important for the success of this whole system. This is because managing technical faults and optimising stuff at the supplier and distributor end is only part of the story. Optimal power supply depends on optimal power consumption, that is, optimisation on the demand side—and this can be done only if the consumers are involved in the process.

Several methods are adopted by utilities in various countries (not many consumer-side measures exist in India, though) to manage the demand—differential pricing, smart meters and so on.

“Even whilst living in the arena of information, we only get to know about our energy consumption after we get the bill in our hands. We still have to place a phone call to the utility if a power failure or outage occurs, and it takes hours to identify and rectify the problem. What if we can govern our electricity bill just by changing the work hours of our appliance, or placing a networked sensor along wires which could locate and report a fault or prevent it from happening in the first place?” asks Priyanka Singh Panwar, senior hardware engineer, Powertech Automation Solutions, which manufactures remote monitoring and control systems.

For all this to happen, the smart grid should manifest in people’s homes too. Panwar explains that in people’s homes, the smart grid should mean detailed information through home energy-monitoring tools. These can be small displays or Web-based programs that give a real-time view of how much energy you are using, which appliances consume the most and how your home compares to others. Such information will give people ideas on how to cut energy bills.

What is needed to start is a smart meter with two-way communications. A smart meter would give detailed information on usage, and also enable differential pricing—where the consumer would be billed less for power consumed in lean periods and more in peak hours. This is one of the simplest ways of encouraging the consumer to use energy-guzzling appliances like clothes dryers and dishwashers during non-peak hours.
Home area network (HAN) example (courtesy: Rajeev Sharaf)
At another level, with home networking and smart appliances, it is possible for the smart meter to automatically switch appliances on or off depending on the load and corresponding instructions from the utility. This helps the utility in peak load management. Additionally, the utility saves the many man-days spent in meter readings, line connection and disconnection, etc, as these can be done through the smart meters. Losses due to theft, wrong meter readings, technical errors and so on can also be avoided.

“In total, we can say that AT&C losses could be reduced to a great extent, with improvement in reliability and quality of power supply and reduction of establishment charges and repair and maintenance expenses. With these improvements, there may be a reduction in tariff structure,” says Ramesh.

It is very important that such benefits are passed on effectively to the consumers in order to encourage them to implement home area networking and buy smart appliances—which are auxiliary technologies needed to ensure the effectiveness and evolution of smart grids. A smart meter alone is not enough.

For this to happen, Grid Net’s CEO Ray Bel quips that the innovation has to sync with the “gotta see, gotta have” attitude of customers and not happen at the thoughtful, careful speed of utility-side innovation. Consumers need to be tempted with killer apps, including home appliance control, home security systems, video communications, home energy consumption and pricing, home multimedia system controls and more. “With these goodies, consumers will have a plethora of incentives to check in frequently with their Smart Home centre – to see what’s up, to transact (yup, that’s right: e-commerce right on the ‘fourth screen’) and to make intelligent energy resource decisions,” Bell writes in an article.

There are signs of these dreams materialising soon. For one, the industry is slowly converging on the protocols and standards for smart appliances and home networking. Zigbee, for example, is emerging as a popular standard on this front. Newer applications and smart appliances are also emerging on the scene. GE’s product line is one typical example.

“Home energy management (HEM), enabled by the smart grid, is an extension of smart meter deployments that provide interesting benefits for residential customers and utilities. IDC found that customers reduce overall energy use by 4 to 15 per cent when they receive real-time feedback on power consumption. For utilities, HEM solutions open new opportunities for strengthening customer relationships, managing power loads, defending against new competitors and realising new revenue from value-added services,” says Raina of Cisco, which has launched some solutions in this space.

Cisco’s HEM gives residential consumers the ability to see and understand their energy use—and its costs—in real time. The consumer interface is the Home Energy Controller (HEC), a countertop display with an LCD touchscreen that can communicate with other home devices—such as a smart meter, smart plugs and programmable thermostats—to help optimise in-home energy management. The HEC has the potential to do for residential consumers what hybrid drivers can do each time they sit behind the wheel.

At this year’s Consumer Electronics Show, Intel revealed its intelligent in-home device, described as the ‘fourth screen’ for the home (the first three being television, computers and mobile phones). The device is powered by an Intel Atom processor and provides a centralised dashboard manifested on a stylish, technologically-advanced OLED touch screen. It helps the consumers understand their power consumption patterns and automatically schedule and control devices using smart appliances, programmable thermostats, etc.

Industry majors like Microsoft and Google also offer power management solutions. Rumours are that Apple will also be entering this space soon, as it has filed two related patent applications. The proposed energy management system would allow consumers to reduce electricity bills by controlling and maximising how power is allocated to home electronics such as computers, cell phones and even iPods.

Apparently, the home energy management dashboard is not based on any new technology. Data would be transferred through existing home or business wiring with the HomePlug Powerline Network—a plug-in device that essentially turns outlets into high-speed Internet sources. The system would give consumers real-time information on their energy use, how much it costs and the opportunity to do something about it. Whether all this would require a new device or an application that can run on existing ones is not clear yet.

Such innovative devices and solutions that make it fun, exciting and easy for customers to understand and manage their energy consumption would take demand-side management to the next level. To begin with, we could start calling the initiative as ‘smart homes’ rather than in staid technical terms!

Smarter Smart Grids: Looking Into The Future

Current technological developments, research and discussions happening world over indicate that smart grids are going to become smarter than ever before

Homes that give back. One of the key features of a smart grid is its ability to combine power produced from distributed power sources. Hence, theoretically, every home can be producer. If the house is able to produce more energy than it consumes, through solar and other renewable power sources, it can give back to the grid, and get discounts on its bill too. Such an idea was also presented by GE when it demonstrated its vision of a zero net energy house.

Grids that crystal-gaze. Instead of merely reacting fast to extraordinary situations, grids of the future will even be capable of anticipating peaks or troughs in demand and planning the distribution accordingly.

Smart grid 2.0. Echelon’s CEO, Robert A. Dolin believes that smart grid technology is more than mere two-way communications and remote meter reading. The Smart Grid 2.0 puts intelligence and communications in devices throughout the grid from distribution equipment (meters, transformers, capacitor banks, etc) to commercial electrical devices (chillers, boilers, air handlers, lighting, etc) and home appliances like electric water heaters, air-conditioners, and rooftop solar arrays. These smart devices can now become a part of the grid, able to interact in real time to changing conditions on the grid.

The Smart Grid 2.0 uses the grid network and the devices connected to it as a communicating, intelligent system for the delivery of additional services and increased operational efficiency, such as demand response programs. Another significant benefit of the Smart Grid 2.0 is asset management. Because of this network infrastructure approach to the smart grid, utilities can see all equipment and how the power lines interconnect that equipment to monitor the health of the systems in real time.

ISPs going out of business. If the broadband-over-power-line goals of smart grid taskforces work out as planned, one day you would just have to connect your computer to a power plug in order to surf the Web! That means, the Internet would reach every nook and corner of the country.

Energy from renewable energy sources. One of the key issues with distributing renewable energy so far has been that such sources sometimes produce less energy and even that is often seasonal, hence not justifying extensive investments in grids. However, smart grids enable such sources to be easily integrated into a flexible transmission and distribution system. Therefore we would really be able to tap the benefits of alternative energy sources, even if it is just a collection of solar panels on a company’s rooftop.

Smart grids that use the cellular network. The power sector in India is held and managed by the government, but in other countries it is not so. One of the main benefits of a smart grid infrastructure is that it enables even small utility providers to prosper—it makes power a free market. Such a market with players large and small is likely to see many low-cost innovations. One such has been demonstrated by a pilot project in Texas, where a small utility has used the cell phone as the mode through which smart meters communicate with the grid. Radio frequency (RF) meshes have so far been used for this purpose in most pilot projects and implementations. The success of this innovative pilot means that the mobile network might challenge this established technology in the near future.

Load-shaping demand-response systems. Schneider, the energy stalwart, predicts that we will soon move out of the current mode of demand-response (DR 1.0) to a more sophisticated one (DR 2.0).

Current systems can manage load shedding or load curtailment (shutting off a device during peak events) and load shifting (a more sophisticated technique that moves loads away from the peaks, by preheating or pre-cooling, delaying activities such as pool pumps, defrost cycles and dishwashers).

But, DR 2.0 can do load shaping, which constantly fine tunes demand in real time to adjust to fluctuations, such as those caused by intermittent renewables. The company feels that DR 2.0 is likely to be highly in demand in the next few years as intermittent renewables become an ever-increasing percentage of total power.

Virtual power grids. There is another highly ambitious and futuristic project from Schneider. A very simple problem led to this innovative idea. Usually, tenants, not the owner, have to bear the electricity bills and hence the latter shows no interest in implementing any power-saving mechanism in the building. To overcome this, Schneider pro-poses to use its expertise to wring out significant efficiencies from large buildings. It will even bear the cost of doing so. Next, the company will offer that reduced demand to power marketers and aggregators. Of the money they make, some will be passed on to the building owners.

Schneider hopes to make money from multiple revenue streams, not just the load curtailment incentives that are part of most smart grid demand-response programmes. It also wants to tap into payments for permanent capacity (permanent efficiency improvements rather than temporary reductions during peak events); programmes for white certificate trading; and even markets for carbon reduction should they materialise in the future. In a commentary by Jesse Berst in smartgridnews.com, it is mentioned that Schneider was able to save 1½ cents per kilowatt hour when it applied the new programme to Rockefeller Center, and plans to apply the same scheme to downtown Chicago’s 200 biggest buildings. The firm thinks it can pull 150 MW out of the current demand of 800 MW.

Low-cost smart meters. The cost of smart meters has been a major hurdle in the way of smart grid implementations in developing countries. However, companies like Freescale Semiconductor and Accent have demonstrated advanced system-on-chip products made especially for smart meters. This would greatly reduce the cost of smart meters.

Smart meters usually have three components: the wide-area-network connection/radio that takes data back to the utility, the home-area-network connection/radio that connects the smart home, and the metrology component that measures power, voltage, current, etc. Reducing the number of processors, by combining several functions into one, will greatly reduce the cost.

Smart grid optimisation. Optimisation is about making the smart grid work best. Some think that such optimisation is more important than smart meters, demand-response management and so on, as it improves the overall functioning of the smart grid. With multi-core processors and greater number-crunching power, intelligent smart meters that can share lots of relevant information with the utility and high-speed communication technologies, optimisation technology is facing a boom time. Several companies such as GRIDiant, Lockheed Martin, Ambient, S&C Electric and even Oracle have major plans in the optimisation space. With jazzy dashboards and powerful energy management solutions, these optimisation suites are targeting a ‘power’ful market! Over time, these tools can help to completely automate the entire monitoring, control and management tasks in a smart grid.

Monday, September 30, 2013

Smart Renewable Energy Microgrid

Smart Renewable Energy Microgrid

A small team of enthusiastic and adventurous engineers at FluxGen Engineering technologies has come up with a solution to electrify houses in remote rural areas  that are not directly connected to the electricity board power grid. Read on to know more.

Microgrid is basically a small-scale power supply network that is designed to provide power for a small community. It can-not be used for high-power consuming devices but can be used as an alternative approach to integrate small-scale distributed energy resources into low-voltage electricity systems. Enabling local power generation, it comprises various small power generating sources that make it highly fexible and efficient.

Basically, the solution aims to electrify houses that are not directly connected to the electricity board power grid due to their remoteness. To be precise, “We have integrated existing hardware components in the market with a powerful embedded system. The setup forms an electricity grid that is small enough to be called a microgrid. This system is powered by renewable energy sources such as solar photovoltaics (PV), wind and micro-hydel. It can be remotely monitored from anywhere in the world,” explains Ganesh Shankar, managing director, FluxGen Engineering Technologies.

Fig. 1 shows the model of the smart renewable energy microgrid.

Fig. 1: Models of houses which form part of the smart microgrid setup at FluxGen Lab
From concept to product
“Over 400 million Indians either do not have access to electricity or have intermittent access to electricity. Connecting the whole country to the main electricity grid is a task that would take several years and in some places it may not make an economic case,” points out Hari D.K., chief engineer, FluxGen Engineering Technologies. Distributed energy generation and distribution can potentially solve this problem.

An off-the-grid renewable energy plant connected to a network of houses in rural areas will potentially provide them the same quality of power as obtained from the main electricity grid.

“In India, electricity grid penetration is very poor. Fortunately, the communication network penetration in India is much higher. This makes the case for a smart microgrid whose performance can be remotely monitored and virtually supervised,” says Shankar.

Fig. 2: National Instruments’ Single Board RIO (sbRIO 9641) used to intelligently control and monitor the smart microgrid
“We are planning to put our systems in places where there is no electricity. But in case the grid does penetrate, the microgrid should ideally be compatible with the grid for the following reasons:

1. It could optimally utilise grid power and renewable energy power, ensuring that the customers get electricity most of the time.
2. If power generated from the renewable energy source is in excess, it should be able to feed it back to the grid so that other microgrids connected to the network could utilise it,” he said.

Regarding the time taken in developing their concept to product, Shankar says, “Before starting Flux-Gen I was working with GE. There I happened to work on building smart energy meters for about six months. During that time, I got a good understanding of smart grid. After quitting GE, I worked with Selco Solar, a rural electrification company, for about five months. So when I started FluxGen, I wanted to club my experience of working on smart grid to rural electrification so that rural dwellers could have a standard of living as good as an urban dweller’s. Then I decided to pursue the microgrid as I could see the value in it. The whole process duration from inception to working prototype can be estimated as three years.”

Fig. 3: Solar panels on roof tops of the houses will be the primary power source to the microgrid
What makes it different

Microgrid is an idea that has been in the picture for quite some time now. Talking about how their solution differs from the microgrids existing in India, Hari reveals, “There are several microgrids set up in India, but most of them are based on DC transmission. We have developed an AC microgrid system.”

Giving rural houses AC instead of DC will allow them to avail all the facilities an urban dweller could get. Ganesh explains, “Electrical wiring done in the microgrid is similar to that of the main grid, except that it will be connected to lot lesser number of houses. Hence consumers of power from the microgrid will be able to run any electrical appliance that they have.”

Ganesh adds, “While they wouldn’t have much limitation on instantaneous power consumption, the total energy they can get from such a microgrid could be limited based on the size of the plant as the total size of the plant will be limited by the number of solar panels and other energy sources, unlike the main grid which, technically, can give you any amount of electricity you are willing to buy.”

Standard solar energy systems are available as autonomous systems that are connected to a single house. However, there is an inherent advantage in pooling (like car-pooling) that is leveraged by a microgrid to deliver electricity to several houses.

“For example, one of the components of a solar PV system is the inverter, which converts power from DC to AC. Suppose an inverter of 1kVA size (rating) costs Rs X. Then, a 10kVA inverter for a pooled system would not cost 10X but closer to 3X. Also, 1kVA inverters would have power conversion efficiency of about 80 per cent, whereas a 10kVA inverter would have an efficiency of 95-98 per cent,” explains Shankar. Thus there are cost and quality advantages to having a microgrid solution over independent systems (refer Fig. 2).

How it works

Ganesh and Hari explain the working by referring to Fig. 1. Basically, the entire system or solution consists of energy consumers (individual houses) and an energy generation setup. Individual houses are connected to the power network via a smart meter, which can communicate with the generation end. One of the main components used in this solution is the solar PV panel. It is placed on the rooftop of every house. Another vital component is the solar converter, which performs three tasks. It charges the battery from solar power, converts the DC power from solar or battery to AC, and if the microgrid is connected to electricity board (may be in the near future), then feeds the excess power to the main grid.

Why DC microgrid is less effective than AC microgrid
1. Household appliances like bulbs, fans and television sets are commonly available with AC power as the input, whereas getting the same in DC format is difficult. If one is still able to get a DC system, it will cost more than the AC system.
2. Also, AC products are more evolved, as they are manufactured by leading electronics companies. Though AC power is converted to DC in most systems, opening up a system just to trace the DC point is not feasible. DC utilities are not scalable in the Indian market.
3. Power dissipation (resistive loss) in AC wiring is much lesser than in DC wiring. For houses in the vicinity (in a DC microgrid), this could lead to reduced overall system efficiency. In our case study, we could do a calculation for both the systems and get the exact figures.
4. The efficiency of inverters increases with power capacity, while the cost reduces. For instance, one can get an inverter with 6kW power capacity and an efficiency of more than 90-95 per cent at three times the price of a 1kW inverter, which will have an efficiency of about 85 per cent. For a microgrid with more than ten houses, the peak power required would be about 6 kW. If those ten houses are powered with DC power, the cost and efficiency would perhaps converge with AC power.
5. Also, during some emergency or maintenance, a diesel generator set (an AC power source) can be connected to the system in order to ensure that the consumer is not deprived of power.

The battery incorporated in this so-lution stores the solar energy to power the house when there is no sunlight. The feature of Energy and Health Monitoring system monitors the plant operation and ensures the plant is operating in the limit of safety and gives an alarm if it is not in a safe health condition. This feature enables preventive maintenance of the plant. The most important aspect of this solution would be to tabulate the energy consumed by each individual house and also communicate the energy and health data to the remote location via Internet. For this there is a communication module that communicates with the individual meters. This helps the plant operator to virtually monitor the performance and health and also control the plant with an internet connection, while being located anywhere in the globe.

Fig. 4: Digital meter used for energy monitoring and communication at individual houses
The smart meter can measure the electrical parameters and can also connect or disconnect power according to the operator’s instructions, and it can communicate with the communication module continuously. So the power and meter communication network forms the channel for power transfer from the generating point to individual houses. The communication network could be wired or wireless based on the geographic spread.

In the future

Depending upon the geographical location of various other renewable energy sources such as wind, micro-hydel or biogas, this system can be integrated with solar as the primary source.

“If in case the electricity board extends the grid, then it can be fitted to the microgrid seamlessly. Diesel generator can also be integrated as a contingency plan (for power when there is emergency or during maintenance),” says Hari.

Ganesh informs, “The first version is ready. Based on the feedback we get from the initial takers, we will implement more features. A fully functional working prototype is ready in our lab and we are looking forward to work with government bodies, NGOs, international bodies, private setups and social enterprises in building as many smart renewable energy microgrids as possible.”

Adding to that, Hari says, “We wish to sell the smart renewable energy microgrid tools to government, NGO or private setups who will operate the system using the tools we have developed for the operation of a microgrid. We will also sell them billing software, which will help them to collect appropriate charges from the individual power consumers of the microgrid.”

Friday, September 20, 2013

World's thinnest substance graphene 'will power the next generation of computers'


World's thinnest substance graphene 'will power the next generation of computers'


 
Graphene paper, a compound based on graphite, which is said to be lighter, stronger, harder and more flexible than steel

Today, most information is transmitted by light – for example in optical fibrers. Computer chips, however, work electronically. Somewhere between the optical data highway and the electronic chips, photons have to be converted into electrons using light-detectors. Scientists at the Vienna University of Technology have now managed to combine a graphene photodetector with a standard silicon chip. It can transform light of all important frequencies used in telecommunications into electrical signals. The scientific results have now been published in the journal “Nature Photonics.”




Computing power made of carbon?

Both academia and the industry have high hopes for graphene. The material, which consists of a single layer of hexagonally arranged carbon atoms, has extraordinary properties. Two years ago, the team around Thomas Müller (Institute of Photonics, Vienna University of Technology) demonstrated that graphene is ideally suited to turn light into electrical current. “There are many materials that can transform light into electrical signals, but graphene allows for a particularly fast conversion,” says Thomas Müller. So wherever large amounts of data are to be transmitted in a short period of time, graphene will in the future probably be the material of choice.

Graphene - a two dimensional sheet made of carbon atoms - can convert light into electrical current.
Graphene – a two dimensional 
sheet made of carbon atoms – can convert light into electrical current.

The researchers had to come a long way from the basic proof of what the material can do to actually using it in a chip – now they have succeeded. The Viennese team worked together with researchers from the Johannes Kepler University in Linz.

“A narrow waveguide with a diameter of about 200 by 500 nanometers carries the optical signal to the graphene layer. There, the light is converted into an electrical signal, which can then be processed in the chip,” Thomas Müller explains.

THE WONDER OF GRAPHENE

Graphene is a single atomic layer of carbon atoms bound in a hexagonal network.
It not only promises to revolutionise semiconductor, sensor, and display technology, but could also lead to breakthroughs in fundamental quantum physics research.
It is often depicted as an atomic-scale chicken wire made of carbon atoms and their bonds.
Scientists believe it could one day be used to make transparent conducting materials, biomedical sensors and even extremely light, yet strong, aircraft of the future.
Similar to another important nanomaterial - carbon nanotubes - graphene is incredibly strong - around 200 times stronger than structural steel.

Versatile and compact

There have already been attempts to integrate photodetectors made of other materials (such as Germanium) directly into a chip. However, these materials can only process light of a specific wavelength range. The researchers were able to show that graphene can convert all wavelengths which are used in telecommunications equally well.

The graphene photodetector is not only extremely fast, it can also be built in a particularly compact way. 20,000 detectors can fit onto a single chip with a surface area of one square centimeter. Theoretically, the chip could be supplied with data via 20,000 different information channels.

More speed, less energy

The ultra-thin material called graphene could help develop super fast electronics


“These technologies are not only important for transmitting data over large distances. Optical data transmission also becomes more and more important within computers themselves”, says Thomas Müller. When large computer clusters work with many processor cores at the same time, a lot of information has to be transferred between the cores. As graphene allows switching between optical and electrical signals very quickly, this data can be exchanged optically. This speeds up the data exchange and requires much less electrical energy.

Friday, September 13, 2013

Industrial Processes Call for Customized Approaches to Wastewater

Industrial Processes Call for Customized Approaches to Wastewater.

Water is a mission-critical resource for industrial firms, and wastewater treatment makes up an important component of many company’s water-management strategy. Increasing water scarcity and stress, along with ever-stricter government regulation, compel industrial firms to seek out ever-more-efficient systems for treating their wastewater.

How do manufacturing and industrial firms treat their wastewater? Although we’re discussing industrial wastewater treatment here, the best place to start is describing conventional treatment processes. Nearly any industrial plant will need to process sewage — graywater and human waste — either through an in-house plant or by feeding it to a municipal facility. For any enterprise large enough to need its own wastewater facilities, the default system would be more or less based on the three stages of primary, secondary, and tertiary treatment.

Credit: EPA
However, a manufacturing or industrial plant will require that standard model to be altered or augmented, depending on the types of processes carried out at the facility. Michelle Hamm, environmental manager at Monadnock Paper Mills in Bennington, N.H., told me in an interview that “for municipal plants, their largest issue is parasites, things like E. coli. But in industrial treatment systems, each waste stream is different, depending on the actual chemicals used in the facility.” For example, Monadnock’s operations produce large volumes of short paper fiber, so the plant’s sludge-handling process is crucial. Monadnock recovers and treats its sludge in such a way that it can be used by local agriculture for topsoil.
Credit: EPA
The basic kinds of wastewater treatment processes are physical, biological, and chemical. Physical processes remove solids by such means as screening, skimming and settling. In biological processes, bacteria and other organisms are used to consume organic matter. Chemical processes can be used to act on pollutants in ways that allow them to be more easily removed from wastewater.
A primer from the U.S. Environmental Protection Agency (EPA) explains the three conventional steps in wastewater treatment:
  1. Primary treatment removes coarse solids from wastewater after preliminary screening for large floating objects. In a sedimentation tank, suspended solids settle to the bottom, forming primary sludge, which is usually removed using mechanical equipment.
  2. In secondary treatment, organic matter is removed using biological processes. According to EPA, the two most common methods for secondary treatment are attached growth processes, in which microbial growth occurs on the surface of a plastic or stone medium; and suspended growth processes, in which microbial growth takes place suspended in the water, which is aerated or agitated to introduce oxygen.
  3. Tertiary treatment (a.k.a., advanced treatment) refers to any treatment processes employed after secondary treatment before discharge into the environment. Tertiary treatment can involve filtration, disinfection, odor control, and removal of elements such as nitrogen and phosphorus.
Pretreatment Diverts Contaminants in Advance
The conventional three-stage wastewater treatment process can be negatively affected by toxic chemicals in the waste stream. Such chemicals can disrupt the functioning of standard wastewater processes or can end up being harmfully discharged into the environment.
EPA says, for example, that “chromium can inhibit reproduction of aerobic digestion microorganisms, thereby disrupting sludge treatment and producing sludge that must be disposed of with special treatment.” If they find their way into wastewater, volatile organic compounds (VOCs) can cause gases or vapors to build up in sewer head spaces, sometimes resulting in explosions. Chemical reactions in wastewater can cause poisonous gases to form. Cyanide and acid, says EPA, “both present in many electroplating operations, react to form highly toxic hydrogen cyanide gas.” Similarly, “sulfides from leather tanning can combine with acid to form hydrogen sulfide.”
Wastewater treatment at a paper mill. Credit: EPA
For these reasons, industrial facilities often have to use pretreatment processes to remove such compounds from wastewaters prior to conventional treatment. Pretreatment in the U.S. is a highly-controlled process falling under the 1972 Clean Water Act (CWA). EPA, in partnership with state governments and publicly-owned treatment works (POTWs) have the responsibility to regulate a National Pollutant Discharge Elimination System (NPDES), which issues permits for industrial firms that emit wastewaters.

Background materials from Munich, Germany-based Siemens AG stress that industrial wastewaters are highly-specific to the facility. Impurities could include “acidic [chemicals] from a plating process, colorings, acids, oils and fats from food processing, or the presence of organic chemicals, such as pesticides, paints, dyes, or detergents.” Pretreatment processes, says Siemens, “can be as simple as chemical addition or as complex as the integration of multiple unit processes for a complete water treatment system.” Pretreatment equipment can be purchased directly or operated on-site through a service contract.
For more stories like this visit Industry Market Trends
Siemens cites the case of a utilities company in Texas that had a problem with copper levels substantially higher than those allowed under its NPDES permit. Siemens provided an ion exchange system for removal of heavy metals. The system uses 30-cubic-foot vessels containing cation resin to remove copper from the facility’s wastewater. Siemens is contracted to remove the vessels periodically and take them to a special facility for recovery of the copper and regeneration of the resin. Siemens says that “all residuals from the regeneration process are sent for secondary treatment and recovery” and that “no waste goes to a landfill.” Siemens then ships the regenerated resin back to the utility for reuse.
Tertiary Treatment Provides Final Polishing
As I mentioned above, tertiary treatment really refers to any final advanced treatment processes that prepare wastewater for discharge into the receiving environment, such as a river, lake, wetland, or the ground. Such processes might include further filtration, lagooning, land treatment, or removal of nutrients or other substances. According to Siemens, tertiary treatment technologies “can be extensions of conventional secondary biological treatment to further stabilize oxygen-demanding substances in the wastewater, or to remove nitrogen and phosphorus.” Such advanced treatment can also involve “physical-chemical separation techniques such as carbon adsorption, flocculation/precipitation, membranes for advanced filtration, ion exchange, dechlorination, and reverse osmosis.”

Dow chemical plant in Freeport, Texas. Courtesy of Dow Chemical Co.Dow chemical plant in Freeport, Texas. Credit: Dow Chemical Co.

Under appropriate circumstances, land treatment can be a beneficial, lower-cost tertiary alternative. EPA refers to land treatmentas “the controlled application of wastewater to the soil where physical, chemical, and biological processes treat the wastewater as it passes across or through the soil.” The most common land-treatment technique is slow rate infiltration, using the treated wastewater for irrigation. Most nutrients are used by plants, while “other pollutants are transferred to the soil by adsorption, where many are mineralized or broken down over time by microbial action.”

Constructed wetlands are another tertiary strategy. My recent article on green infrastructure detailed three cases of engineered wetlands constructed by The Dow Chemical Co., Alcoa and Shell Petroleum Co. Shell built a constructed wetland at one of its oil fields in Oman, where its wells were bringing up large volumes of water along with the oil. The wetland uses reed beds to filter the water. Microbes break down the oil underground. Not only can such green infrastructure projects provide cost-effective tertiary treatment, but they also create wildlife habitat while eliminating harmful pollutants.
I talked about Dow’s wetlands projects with Gena Leathers, who manages the company’s corporate water strategy. Dow’s subsidiary Union Carbide built a 110-acre wetland at a fraction of the cost of a conventional gray-infrastructure treatment system. Leathers told me that the purpose of the wetland “was to provide a finishing step to reduce solids in the effluent to meet permit requirements. This system, she said, “saved the company many millions of dollars while providing value to nature.” She stressed that “there are many things companies can do to help the company and nature at the same time.”

Tuesday, September 3, 2013

Modular Battery Concept for Short-Distance Traffic

Modular Battery Concept for Short-Distance Traffic.

Electric mobility may be economically efficient today. Battery-based electric drives can be applied efficiently in urban buses, for instance. Frequent acceleration and slow-down processes as well as a high utilization rate in short-distance traffic make their use profitable even when considering current battery costs. At the IAA International Motor Show in Frankfurt, Karlsruhe Institute of Technology (KIT) will present an e-city bus demonstrator to illustrate the concept.


The key modules of the demonstrator are a drive train with a high-torque electric motor, a high-voltage network, a battery management system, and a novel modular battery system with lithium-ion cells made in Germany. At the IAA, the demonstrator developed for drive tests will present options for the design of the electric drive train of buses.
Using the demonstrator, the innovation potential of KIT's research results can be validated and interaction of the components can be analyzed experimentally under the simulated operating conditions. "In this way, the demonstrator contributes to the further development of electric mobility," Andreas Gutsch, coordinator of the Competence E project at KIT, explains.
The battery system consists of flat modules that can be stacked to reach the dimensions and electric characteristics desired. Various spaces in the different types of vehicles can be used for accommodating the energy storage system. The battery management system and drive control developed for the KIT demonstrator allow for driving operation taking into account the current performance limits of the system and its components.
"Energy efficiency of an electric bus can be increased by an adequate selection of components already," says Martin Gießler, Head of the demonstrator development project. "Of course, an anticipatory operation and recuperation strategy plays an important role." By means of recuperation, braking energy is converted into electrical energy again. The drive consists of a low-torque engine supplying a high driving torque for the vehicle. The engine is connected directly with the differential gear of the rear axle. It decreases the gear reduction to be implemented and, hence, ensures a high efficiency of torque transmission.
The e-city bus demonstrator development project was funded by the Federal Ministry of Economics and Technology


Thursday, August 29, 2013

THE RISING SUN GREEN JOBS ARRIVE......

THE RISING SUN GREEN JOBS ARRIVE

With renewable energy being all the rage right now, solar literally produces the power to change the world. If you want a career in an industry that’s only going to get bigger, solar may be for you..


Blessed with one of the best quality and quantity of sun, India offers a huge potential to develop solar photovoltaic (PV) power both for domestic consumption and export. With several new companies from India and abroad starting their solar operations in India, and existing companies committing to expanding their capacity, solar PV power is bang in the middle of a take-off in India right now. The government too has been very supportive to boost the growth of solar industry. In January last year, the Ministry of New and Renewable Energy (MNRE) and Ministry of Power launched the Jawaharlal Nehru National Solar Mission (JNNSM) with an aim to set up an enabling environment for solar energy penetration in the country. The ambitious project aims to establish India as a global leader in solar energy, not just in terms of solar power generation but also in solar panels manufacturing and further development of this technology.
he JNNSM targets 22 GW of installed solar generation capacity by 2022, 100 GW by 2030 and 200 GW by 2050. It aims to achieve grid parity by 2022 and parity with thermal-based generation by 2030. It also aims to install 4-5 GW of solar manufacturing capacity in India by 2017. In the near term, the solar industry is looking to reach the total installed base of about 1 GW. Over the next two to three years, it may achieve 1-1.5 GW of annual installations year-on-year. Providing further impetus to the solar industry, states like Gujarat and Rajasthan have announced their own solar policies. 

Why solar? 


Here’s why you should think about making a career in this exciting field. 
According to a recent KPMG report, solar power can meet 5-7 per cent of India’s total power requirements by 2021-22, up from a negligible portion today. “Solar power can help our country move closer to the targeted 20-25 per cent reduction in carbon emission intensity of the total GDP by 2020, by contributing as much as one-tenth of this target, besides playing an increasingly important role in securing India’s energy future,” says Arvind Mahajan, head of energy and natural resources, KPMG. 

Based on KPMG estimates, an average of 43,000 new jobs would be created annually in the period 201722 from the rooftop segment itself. Furthermore, around 42,000 jobs can potentially be created annually in the period 2017-22 from utility-scale solar power installations. The agriculture potential could create more than 38,000 jobs annually in the solar industry from 2017-18. KPMG further estimates that more than 600,000 jobs will be created during 2017-22 from rooftop, solar-powered agriculture pumpsets and utility-scale solar installations alone. Solar water heaters could also create more than 420,000 jobs in this period. 

“Hence the solar industry would create close to a million jobs in the period 2017-22, carving a new industry segment like what IT has succeeded to create in the last decade in India,” quips K. Subramanya, CEO, Tata BP Solar. 

Solar industry, at the global level in general and national level in particular, is in a nascent stage hovering around 20GW per annum. “It is expected to grow manifold in years to come mainly due to two reasons: increasing concern for climate change necessitating switching to renewable energy from fossil fuels and also concern about the depleting oil reserves,” adds Dr P. Jayakumar, CEO, Arbutus Consultants. 

Exciting avenues 


The solar industry offers exciting career opportunities in various disciplines of engineering like chemical engineering, mechanical engineering, electrical engineering, electronics and communications and civil engineering. 

“If you check five years back, job opportunities were not even 10 per cent of what they are today. I personally see 30 per cent growth in this industry in the years to come,” quips Hitesh C. Doshi, chairman, Waaree Group. 

“With the launch of the NSM and the huge target which has been set by the government, different companies are trying to engage themselves through either installation of power plants or design and manufacture of solar components, various devices and individual sub-systems required for the power plant. As far as the knowledge base is concerned, one is the engineering aspect of the power plant design and another is the physics of how this power gets generated. So the job opportunities exist in each of these sectors,” opines P.K.Ghosh, management consultant, Agni Power & Electronics.

“As themegawatt-level solar power plants become more prominent. The employment opportunities of civil, mechanical and electrical engineering would go up considerably. Typically, a one megawatt plant during construction would need a minimum of five engineers in addition to technicians. The government itself has a target through the JNNSM of 1000 MW by 2013 and 20,000 MW by 2022. This offers numerous employment opportunities for engineers. To catch up with this, the manufacturing sector also would need engineers from chemical and mechanical disciplines,” explains Jayakumar. 
Subramanya adds, “The job outlook seems extremely positive and enthusing. In fact, the solar industry currently suffers from severe shortage of skills at all levels for rapid growth and particularly in conceptualisation of opportunities, application engineering, marketing, financing, project management, O&M, etc.” 

“The two main prospects that I see in this industry are one on the manufacturing side and the other on the power projects side. There are auxiliary areas also such as electronics where things like inverters come into play. Now talking about the manufacturing side, we already do a lot of manufacturing of cells and modules in India but most of the raw materials and equipments are all imported. For example, for the module, most of the equipment and the machinery, solar cells (although solar cell manufacturing is now taking off in India) and backsheet polymers all come from outside. Similarly, when you talk about solar cell manufacturing, gases, metal pastes and silicon wafers are imported; so there is a lot of scope for starting manufacturing of these raw materials in India. And to cater to this, you would need engineers from various disciplines including electrical, electronics, physics, material science, mechanical and civil engineering,” elaborates Dr Omkar Jani, principal research scientist, solar research wing at the Gujarat Energy Research and Management Institute—Research, Innovation and Incubation Centre (GERMI-RIIC). 

He continues, “Now coming to the power projects side, you require engineers on the site for project execution— including engineers who can design the power plant at a higher level, as well as civil, structural, mechanical and electrical engineers for the project execution. There are also typical needs for businesses that can fabricate and supply mechanical structures like the Module Mounting Structures in a cost-effective way using cost-effective ‘Indian-style’ innovations. Thus, the industry opens up prospects at various levels as well. It’s just like any other power industry. You need the same kind of people but then they have to be tuned for solar.” 

The manufacturing sector would need personnel with ITI, diploma and engineering qualifications. The implementation of projects would need diploma holders and engineers in addition to unskilled labour. 

“A typical rule of thumb used in the US is that you need 40 people per installed megawatt of solar power, and these include people right from manufacturing to installation to maintenance. But if you look at the Indian scenario, this number needs to be scaled up to 100 because we typically employ more manpower for manufacturing and execution of projects. So now you can extrapolate how many megawatts is India looking to install. As per the objectives of the JNNSM, the government plans to increase its deployment to 20,000 MW by 2022, which clearly points you to the kind of growth we are looking at in solar industry,” explains Dr Jani. 

What role to choose? 


In solar industry, you can find a place in any of the following broad categories: design engineers, who take care of the design and engineering of systems; production engineers, who oversee production of cells (chemical process), modules (mechanical), etc; quality control, where you will be responsible for quality control and assurance; and project engineers, who look after the installation, commissioning and management of systems at a project’s site. 

There are wide possibilities, and as the market and technology develops, in addition to the usual requirements in R&D, project development, design and engineering, manufacturing, quality assurance, marketing, installation and commissioning, operation and maintenance, training, teaching, value engineering, procurement, recruitment and hiring, there will be specialists required in the following areas: techno-economic feasibility, sourcing and vendor development, risk management, insurance, financial structuring, regulatory issues, and energy service companies (ESCOs). 


What’s on offer? 
Solar is an evolving and specialist’s field. Candidates with good understanding of energy, environment and economics fit the best. Generally, salaries are based on individual skillsets and qualifications. Jayakumar says, “Typically, the average salary for a fresh graduate engineer in this field can range anywhere from Rs 100,000 to 150,000 per annum. Engineers with about three-five years related experience can expect anything between Rs 400,000 and Rs 500,000 per annum.” 

“The subject calls for self-confidence, understanding growth imperatives of the Indian economy, energy security issues, global technology development, IPR issues, etc. All these aspects make solar a very exciting field to work in. Salary and perks are as exciting as any other industry,” Subramanya informs. 

“In solar industry, you can look forward to a career which is definitely rewarding. It’s an expensive proposition, which means, for a high-value project, a company will make sure that it gets good people and for that, it will have to reward them well. Also, most of the companies in this field are MNCs, and if Indian companies want to do well, they need to keep up with the high scales offered by the multinational firms. And the best part is, it’s going to be like that for the next couple of years because solar has no way to go but only up from here,” adds Dr Jani. 


Tips from the experts 

The industry can be divided into three major categories, namely manufacturing, system integration and project implementation. The leading firms in these sectors are Tata BP Solar, Lanco Solar, Moser Baer Solar, Indosolar, Reliance Solar and Aditya Birla Solar, amongst others. 

Your next question is likely to be “How to get an edge over your competitors?” Overall, solar jobs are growing quickly and employers are having a hard time finding qualified workers. “We don’t have many qualified people in solar. People who come with some power project experience, know-how to handle projects and build systems can be trained in solar,” Dr Jani adds. 

Jayakumar opines, “Specialisation in energy management in exceptional cases is sought for. However, opportunities exist for regular electrical, mechanical and civil engineers.” 

“Since the number of jobs will exponentially increase in this industry in the coming years, PV power plant technology needs to be taught as a main subject in engineering colleges to address the huge shortage of manpower in the solar industry. At Agni Power, we offer on-the-job training. During the course of production and installation, people acquire the skillset and also gradually learn to independently handle the systems,” adds Ghosh.

To sum it up, good educational background with an urge to learn and innovate makes a candidate prospective. In addition, recruiters while hiring usually look for a candidate who has: 
1.    Willingness to travel to rural areas and understand issues for inclusive growth 
2.    Knowledge and exposure in advanced areas like semiconductor physics, system integration,       installation and commissioning, troubleshooting, after-sales service, customer care, techno-commercial analysis of mega projects, and erection, commissioning and grid integration of large project 
3.    Planning and co-ordination skills in project management 
4. Design skills 
5. Communication and story writing skills

Well, solar by itself is not at all complicated. It is a very simple technology, which makes it even more attractive. Once you understand what solar is, it becomes very easy to adapt. As Dr Jani puts it, “The point is not to train people on solar but to adapt them to solar.”